Test Code: AD-X-01-17

- 1. This paper has ${\bf 15}$ questions.
- 2. All questions are compulsory.
- 3. Each question has four options, out of which **ONLY ONE** is correct.
- 4. Each question carries 4 marks.
- 5. The paper carries negative marking. 1 marks will be deducted for each wrong answer.

Maxim	um T	ime: 30 Minutes						Total Marks: 60		
Name:						Roll Number:				
Q1.	If sin	$x = \frac{4}{5}$, sec $x =$								
	A)	$\frac{5}{4}$	B)	5	C)	$\frac{3}{5}$	D)	$\frac{5}{3}$		
Q2.	For an angle A, which does not exceed 90° , comment on the statements below: Assertion: $\tan A$ will never be greater than 1. Reason: Both $\sin A$ and $\cos A$ will never be greater than 1.									
	A) B) C) D)	 Both Assertion and Reason are correct but the Reason is not the correct explanation Assertion is correct but Reason is wrong 								
Q3.	In triangle ABC, right-angled at B, if $ an A = \sqrt{3}$, find the value of $\sin A \cos C + \cos A \sin C$									
	A)	$\frac{\sqrt{3}}{2}$	B)	$\frac{1}{2}$	C)	1	D)	$2\sqrt{3}$		
Q4.		PQR, right angled value of sin P .	at Q ,	$QR = 8\ cm$ and th	e per	imeter of the trian	gle is 2	24 cm . Determine		
	A)	$\frac{3}{5}$	B)	$\frac{4}{5}$	C)	$\frac{3}{4}$	D)	None of these		
Q5.	sec 6 A)	8° is equivalent to $\sec 32^\circ$	B)	$\cos \mathrm{ec}~32^{\circ}$	C)	$\sec 22^{\circ}$	D)	$\cos \mathrm{ec}~22^{\circ}$		
Q6.	,	h of the following v	ŕ		- /		_ ,			
Q0.		I. $\cot 0^{\circ}$ II. $\tan 90^{\circ}$ III. $\cos \sec 90^{\circ}$ IV. $\sec 0^{\circ}$ V. $\sec 90^{\circ}$	anaco	aro not domiod.						
	A) C)	All of these I, II, III and IV			B) D)	I, II and V II and V				

 $\operatorname{Set} A$

Q7.	$\frac{2 ext{ ta}}{1+ ext{ta}}$	$rac{{ m an}\ 30^\circ}{{ m n}^2\ 30^\circ}=$						
	A)	$\sin 30^{\circ}$	B)	$\cos 30^{\circ}$	C)	$ an 30^{\circ}$	D)	$\cot 30^{\circ}$
Q8.	Whic	ch of the following i	dentit	ies is false?				
	A)	$\sec^2 \ heta - 1 = \tan^2$	θ			$\cos^2 heta = 1 - \sin^2$		
	C)	$\sec heta + \tan heta = rac{1}{\sec heta}$	$\frac{1}{e \theta - \tan \theta}$	$\overline{\theta}$	D)	$\csc^2\theta + 1 = \cot^2\theta$	2 θ	
Q9.	$ an1^\circ an2^\circ an3^\circ \dots an89^\circ =$							
	A)	Undefined			B)	89		
	C)	0			D)	None of these		
Q10.	If the angle of elevation of a bird sitting on top of a tree as seen from a point at a distance of $10 m$ from the base of the tree is 60° , then the height of the tree is:							
	A)	$rac{10}{\sqrt{3}}~m$	B)	$10\sqrt{3}m$	C)	10m	D)	30m
Q11.	The angles of elevation from two points at distances m and n in a horizontal line through the base of the tower, of the top of the tower are complementary to each other. Then, the height of the tower is							
	A)	m + n	B)	mn	C)	\sqrt{mn}	D)	2mn
Q12.	The angle of elevation of the top of a flag post from a point on a horizontal ground is found to be $30\degree$. On walking $6\ m$ towards the post, the angle of elevation will							
	A)	Increase			B)	Decrease		
	C)	Remain constant			D)	Cannot be determ	ined	
Q13.	If B	$=15\degree$, then value o	f4 si	n 2 B . cos 4 B . sin 6 A	B equ	lals		
	A)	2	B)	4	C)	1	D)	1/2
Q14.	Whic	ch out of the followi	ng ide	entities is false?				
	A)	$ an^2 heta - rac{1}{\cos^2 heta} = -$	-1		B)	$\cos^2 heta+rac{1}{1+\cot^2 heta}=$	= 1	
	C)	$\cot^2 heta - rac{1}{\sin^2 heta} = 1$			D)	$\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta} =$	$2 \mathrm{se}$	$\mathrm{c}^2 heta$
Q15.	Ifta	${ m n}x=\sin45^{\circ}\cos45^{\circ}$	$45^{\circ} +$	$\sin30^{\circ}, ext{then}x=$				
	A)	30°	B)	45°	C)	60°	D)	None of these